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Energy stability of modulated circular Couette flow 
By PETER J. RILEY AND ROBERT L. LAURENCE 

Department of Chemical Engineering, University of Massachusetts, Amherst 

(Received 28 May 1975 and in revised form 4 August 1976) 

The stability of circular Couette flow when the outer cylinder is a t  rest and the 
inner is modulated both with and without a mean shear is examined in the 
narrow-gap limit. Disturbances are assumed to be axisymmetric. Two criteria 
are used to determine conditions for stability; the first requires that the motion 
be strongly stable, the second only that disturbances of arbitrary initial energy 
decay from cycle to cycle. The behaviour of critical parameters as a function of 
frequency is similar for the linear and the energy analysis. The range of Reynolds 
numbers bounded above by certain instability and below by conditional non- 
linear st,ability is enlarged by modulation. 

1. Introduction 
We are concerned with the stability of motion between two infinitely long 

coaxial cylinders when the outer cylinder is a t  rest and the inner has angular 
velocity 

The problem with am and SZ, both non-zero has been studied experimentally by 
Donnelly (1964). He used an apparatus which produced an electric current 
proportional to the radial perturbation to the flow. In  the absence of instability 
the signal should be constant. The current was integrated over a cycle of modula- 
tion; we shall refer to this quantity as the amplitude. For steady flow, bifurcation 
is known to be one-sided, and the amplitude of secondary motion is found to 
increase as 

amplitude N (9 - 92:)d 

(Kirchgtissner & Sorger 1969; Davey 1962). Here 92 is the Reynolds number and 
G?: the critical Reynolds number according to linear theory. Donnelly assumed 
that this would also hold for bifurcation of the modulated problem, and con- 
sidered that the flow became unstable when the amplitude first began to increase 
rapidly in approximate correspondence with (2). On this basis he concluded that 
modulation stabilized the flow for y < 1.0 (i.e. if Qo is the critical speed in the 
absence of modulation, when s2, = 0, then for Q p  > 0 instability occurs for 
Qm > S&). The frequency parameter y is defined by 

(1)  sz, = szm + szp cos d t l .  

(2) 

y = ( W f d 2 / 2 V ) B ,  (3) 

where d is the gap width and v the kinematic viscosity. 
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Analysis of Donnelly’s data suggests a trend towards destabilization for y > 1. 
There is some ambiguity in Donnelly’s interpretation of his data. He observed 
departures from the equilibrium configuration as soon as 

Qm + Qp > Q, (4) 

but considered these to be ‘transient vortices’ and not a true manifestation of 
instability as they did not amplify according to relation (2). 

Thompson (1968) presented experimental data from visual observation of the 
onset of instability for modulated flow with zero mean, i.e. Qm = 0. This configura- 
tion may be considered more stable than steady flow, but in the limit of zero 
frequency the data are asymptotic to Q,, i.e. as y -+ 0 the flow becomes unstable 
as soon as 

He remarks that, if the flow has non-zero mean, instability will be observed 
at low frequencies whenever (4) is satisfied, while at higher frequencies no 
instability is apparent until 

This would be consistent with Donnelly’s findings if we supposed that the 
‘transient vortices’ were indeed true secondary motion, i.e. modulation is 
destabilizing at  low frequencies. We note that Donnelly measured the amplitude 
of secondary motion as a function of Reynolds number. However, the transient 
vortices, which appeared whenever (4) was satisfied, are found, by comparison 
with the linear theory of the modulated problem (cf. Hall 1975; Riley & Laurence 
1976), to be subcritical. Donnelly measured, therefore, the amplitude of a branch 
of secondary motion a portion of which was subcritical. There is no reason to 
suppose that the branch is tangential to the manifold of the linear solution, and 
consequently no reason to expect the amplitude to behave as (2). 

The linear stability of the problem studied experimentally by Donnelly has 
been examined by Hall (1 975) and Riley & Laurence (1  976) in the narrow-gap 
limit for axisymmetric disturbances. Hall solved the problem by perturbation 
techniques in three asymptotic limits: 

Qm > R,. (6) 

(i) y + 0 with B = ky, 

where E = Qp/Qm is the modulation amplitude and k is a constant, 

(ii) y 1 with e < 00 

and (iii) E < 1 for arbitrary y. 

He concluded that modulation is destabilizing. Riley & Laurence solved the 
problem using Galerkin’s method and Floquet theory. They found that modula- 
tion was destabilizing in general but led to weak stabilization at larger amplitude 
ratios ( E  > 2.0) and intermediate frequencies associated primarily with a half- 
frequency response. Their results are in excellent agreement with cases (i) and 
(iii) of Hall and with case (ii) when y -+ 00. 

A comparison of the linear results of Hall (1975) and Riley & Laurence (1976) 
with the data of Donnelly (1964) and Thompson (1968), as interpreted above, 
suggests that theory and experiment are in agreement a t  intermediate and higher 
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frequencies, say y 2 2 4 ,  but at lower frequencies, y < 1.5, instability appears 
to be subcritical. (There is, however, a paucity of data for comparison.) Therefore 
we choose to examine the problem using energy theory, not only to determine 
whether this might not be a more reliable predictive technique at lower 
frequencies, but also to evaluate the region open to potential subcritical instability 
for the frequency range of interest. 

We consider the magnitude of W L  - WE to provide some qualitative indication 
of the likelihood of subcritical instability. W L  and W E  are the critical Reynolds 
numbers from linear and energy theory respectively. Evidently, if W L  = W E  
subcritical motion is not possible. In  general, it is not possible to make the 
relation concrete. If, for example, bifurcation is one-sided (for 9 > W L )  sub- 
critical instability is not expected.? If, however, bifurcation is two-sided,$ sub- 
critical motion is not only possible but probable. For the stability of steady flows, 
systems for which bifurcation is one-sided have W L  - W E  ‘small ’, e.g. the Taylor 
problem. Motions which demonstrate subcritical instability and whose bifurca- 
tion is two-sided have W L  - gE ‘large’, e.g. plane Poiseuille flows. This relation 
is not precise, however. For two-sided bifurcations the subcritical branch is 
known to be unstable both for steady primary flows (Joseph & Sattinger 1972) 
and for time-periodic primary flows (Joseph 1972). This branch, however, is 
bounded below by WE, and passes through a positive minimum, where stability is 
regained. The energy bound, therefore, may be of considerable interest in this 
case. 

In  the course of this work we shall compare the results of linear and energy 
theory. We shall say that energy (or linear) theory predicts that modulation is 
destabilizing if WE (or BL) is reduced below the corresponding value 9f (or 9:) 
for the steady problem. This is potentially misleading since gx provides only a 
sufficient condition for stability, and in general provides no information on 
instability. It is, however, convenient usage and no confusion should arise. 

The energy method has previously been applied to modulated circular Couette 
flow in the narrow-gap limit for axisymmetric disturbances by Conrad & 
Criminale (1965). They treat the system studied by Donnelly as one of many 
cases. Several aspects of their work appear questionable. They fhd weak 
stabilization for small amplitude ratios in agreement with the data of Donnelly, 
but energy theory certainly predicts that modulation is destabilizing in the low 
frequency limit (see 9 3.2). They find for modulation of the outer cylinder with 
non-zero mean (the inner being at rest) that a critical Reynolds number, based 
on the maximum velocity of the outer cylinder, tends to zero as the frequency 

t There may of course be branches corresponding to finite amplitude secondary motion 
as distinct from that tangential to the linear solution. These could be subcritical. However, 
the existence or non-existence of such branches has not been proved. 

$ I n  the neighbourhood of B L ,  the relationship between the Reynolds number 9 and 
some measure 5 of the amplitude of the difference motion may be expressed as a power series 

w = wo+~91+pw,+... 
(Joseph & Sattinger 1972). If 9, = 0 then either 9 < W L  or 98 > WL for all C close to 
zero. In  this case the bifurcation is termed one-sided. Normally the supercritical branch 
exists and is stable. If, however, 9, * 0, the Reynolds number satisfies both < WL and 
L?# > WL; the bifurcation is then termed two-sided. 
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increases. This would appear to be a contradiction of a theorem of Serrin (1960). 
They present results for the steady problem and make a comparison with the data 
of Taylor (1923) and the energy bounds of Serrin (1959). Their calculation is based, 
however, on an inner radius R, = 3.80cm and an outer radius R, = 4-035cm, 
while the results of Taylor and Serrin are for R, = 3-55cm and R, = 4.035cm. 
Re-evaluation of their criterion shows that it is particularly sensitive to gap 
width and is in agreement with neither the results of Serrin nor the data of Taylor. 

I n  the following we examine the stability of circular Couette flow by the 
energy method. We shall restrict attention to the case when the outer cylinder is 
at rest and the inner has angular velocity given by (1) .  We derive criteria 
determining strong stability (Serrin 1959) but also a weaker concept of stability 
requiring only that disturbances should decay from cycle to cycle (Davis & von 
Kerczek 1973). This formulation allows the kinetic energy to increase during 
part of a period of oscillation of the primary flow, but requires that it must have 
decayed, at  any instant, from the value observed 277fw earlier. To distinguish this 
criterion from that of strong stability we shall refer to it as ‘mean’ energy theory. 
I n  $ 2 we formulate the energy equations in the narrow-gap limit and describe 
the solution method. In  $ 3  we present the numerical results and compare the 
predictions with the linear theory of Riley & Laurence (1976). In  Q 4 we briefly 
summarize the results and make suggestions concerning further work. 

2. Formulation of the stability problem 
2.1. Primary velocity jield 

Suppose that a viscous incompressible fluid with kinematic viscosity v is con- 
tained between infinitely long coaxial cylinders of radii R, and R, with R2 > R,. 
We shall assume that the gap width d = R, - R, is small compared with R,, i.e. 
6 = d/R, < 1. Terms of order 6 will be neglected in the following analysis. Let 
(r’, 6’, 2’) be cylindrical polar co-ordinates with z’ parallel to the generators. We 
take d, B,n and dzfv as the reference length, velocity and time, where a will be 
taken to be equal to am for flows with non-zero mean and to be equal to QP for 
flows with zero mean. We define dimensionless variables 

x = (r‘-R,)/d,  z = z‘fd, 7 = vt’/d2. 

The primary flow U’ = (0, R,, WV, 0 )  is adequately represented in the limit 
IS +. 0 by the solution of 

a v/& = a2 ‘ V / h 2 ,  
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gl(z) = sinh X(x) cos X(x), g2(x) = cosh X(x) sin X(x), 
- 
44 = 741 -a W(Y) = 9x0) + & ( O ) .  
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We refer to y as the frequency; it is equal, however, to the inverse of the dimen- 
sionless Stokes-layer ‘thickness’. We note for future discussion that a t  low 
frequencies 

while at  high frequencies 
(8) 

(9) 

V(x ,  7 )  N (1 - x) (8 + z cos 07)  

V ( x ,  7 )  N s( I - x) + Ee-ys cos (w7 - yx). 

The complete profile (7)  was used for all numerical calculations. 

2.2. Formulation of the stability problem 

Difference-motion equations. We suppose that the primary velocity and 
pressure fields {U, n> = ((0, V ,  0 ) ,  II) are disturbed to a new motion 

{(C, 5 + v, 6)) j5 + II}. 

W-lXii/i?~+B. V B  + U. V 6  +B .VU = - Vj5 +W-lAG, 

The dimensionless difference variables satisfy 

(10a) 

V . 6  = 0) ( l o b )  

fi = 0 on solid boundaries, fW 
where 92’ = (Rl W d ) / v  is the Reynolds number. The secondary motion is observed 
to have a Taylor-vortex structure (Donnelly 1964). We shall suppose distur- 
bances to be axially periodic with dimensionless wavenumber a. Let V be the 
annular volume between the cylinders defined by the period of a vortex. By 
taking the scalar product of (10a) with 6, integrating over Vand  using conditions 
(10 b, c )  and the divergence theorem, the following energy evolution equation 
results : d X / d T  = - ($W + B), (11) 

where Y =  5 / v B . B d x ,  1 $= j v B . D . i i d x ,  9= / v V B : V B d x  

and D = +{VU + (VU)T) is the rate-of-deformation tensor. 

X ( r )  + 0 as 7 -+ 03 for S ( 0 )  < 03 and if .X(T) decreases from the start.? Let 
Strong energy bounds. A motion is strongly globally stable in the mean if 

I/@(T) = max - (y/g), (12) 
Y 

where 9’ is a class of twice continuously differentiable solenoidal functions on V 
which vanish on solid boundaries. We write 

W E  = min &(T) .  
7 € [O, 2nlw1 

t There are disturbances which, although asymptotically stable, i.e. Z(T) -+ 0 as 
7 + co, are persistent in the sense that Z ( 7 )  may increase for a time. The requirement that 
this should not occur and that the motion be asymptotically stable is equivalent to 
demanding that d T / d ~  be negative definite. 
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Then if W < W E  we may show (Joseph 1966) that 
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.x(7) < s * ( O )  exp {4.?(9/gE - 111, 
where (2 is a positive constant depending only on the geometry. Hence the 
motion is strongly globally stable. 

The Euler-Lagrange equations corresponding to (12) may be written as 

- ~ p - - & ( ~ ) ~ . f i + ~ i i  = 0, 

V . 6  = 0, 

6 = 0 onsolidboundaries, 

where p ( x ,  0,  z ;  7 )  and @(T) are Lagrange multipliers. For fixed 7 E [0,2n/u] we 
may determine & as the minimum positive eigenvalue of (13). 

M e a n  energy bounds. A motion is globally asymptotically stable in the mean if 
Y(T) -+ 0 as 7 -+ 00 for Z ( 0 )  < 00. We define 

e(7;  9) = max -{($9+9)/X}; (14) 

It follows that a 2n/w-periodic motion will be globally asymptotically stable in 
the mean if 

since this implies that X(T + 2 ~ 1 0 )  < S(T) for all T E (0, 00). The maximum value 
of 9, call it W M ,  for which (15) is satisfied if W < W M  is termed the mean energy 
bound. 

Problem (14) is equivalent to 

e(7;  W)6 = - V p - W D . i i + + t i ,  

V . 6  = 0, I fi = 0 on solid boundaries. 

For fixed W and 7,  e(7;  9) may be found as the maximum eigenvalue of (16), and 
evaluated by the requirement that (15) should hold with equality. We note 

that (13) becomes identical to (16) if we set e(7;  9) = 0. 
Equations (13) and (16) bear a passing resemblance to the equations of linear 

stability theory. However, the transfer of energy between the primary and 
disturbance motion is described by terms of the form D . 6 rather than 

a. vu + u. V6.  

Equations (13) and (16) are in addition self-adjoint. The solutions of (13) and (16) 
are, in general, only kinematically admissible solutions of the Nevier-Stokes 
equations and not dynamically admissible, in contrast to the eigenfunctions of 
linear stability theory, which are both kinematically and dynamically admissible, 
at least in the 1im.it of zero amplitude. It follows that WL and WE are equal only 
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for very special motions, e.g. the BBnard problem, or for a more restrictive 
energy theory applied to a specific problem (e.g. Joseph & Hung 1971). 

Non-axisymmetric disturbances have not been observed experimentally 
(Thompson 1968). Thus we shall look for axisymmetric solutions of (13) and (16) 
of the form 

C ( X ,  8, z ;  7 )  = u ( x ;  7) cosaz, G(x, 8, z ;  7 )  = w(x; 7 )  sinaz, 

q x ,  8 , z ;  7 )  = v(x; 7 )  cos az, P ( X ,  8 , z ;  7) = p ( x ;  7 )  COSCIZ. 

After some algebra, assuming 6 -+ 0 and letting 

av -+ v, 
equations (16) become 

e 9 u  = 9% + &&?(aV/ax) V ,  

ev = DLPv - &&?(a V p x )  U ,  (18b) 

u = v = aupx = 0 at x = 0,1,  ( 1 8 4  

where 9 = 8218x2 - a2. After identical manipulations, equations (13) are given 
by (18) with e 3 0. For modulation with non-zero mean we set a = Qm; then 

s = 1, E = E ,  9 grn = (R,Qrnd)/v. 

For modulation with zero mean we set a = Q p ;  then 

s = 0, 8 = 1-0, 9 gp = (R,f i2,d)/v.  

The equations (18) used in our energy analysis result from applying the narrow- 
gap approximation to the wide-gap Euler-Lagrange equations (13) and (16). The 
characteristic parameter arising from this procedure is a Reynolds number 9 
rather than the more familiar Taylor number 26g2. The latter may be calculated 
from an energy analysis only if the wide-gap problem is solved, or if a narrow-gap 
energy formulation is derived which requires that the initial energy is restricted 
in magnitude. Such an energy principle could be derived from the narrow-gap 
equations as formulated by Stuart (1958). 

The results we shall present will not be global since we are assuming axisym- 
metric solutions and hence our bounds do not necessarily guarantee stability 
against non-axisymmetric disturbances. However our results are in a sense 
optimal; stability cannot be guaranteed against axisymmetric disturbances at a 
higher Reynolds number without restricting the initial energy of such distur- 
bances (cf. Joseph & Hung 1971). 

2.3. Solution techniques 

Strong energy bounds. We solve the problem by Galerkin’s method. The solution 
of (18) (with e = 0) i s  expanded in a complete set of functions satisfying the 
boundary conditions ( 18 c) : 

N m 

n= 1 n = l  
u =  2 a n ( 7 ) 4 n ,  V =  2 bn(7)f in.  (19% b)  

The functions {q5n) and { f i n }  are defined in the appendix. Convergence is assumed 
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as N -+ 00. After forcing the truncation error to be orthogonal to the expansion 
functions in the normal way (see appendix), we derive the eigenvalue problem 

IM-pll = 0, (20) 

where 1/31 = 12/aW], M is a 2N x 2N matrix defined in the appendix and I is the 
2N x 2N identity matrix. For fixed N ,  y ,  e , 7  and a let B(a, 7 )  be the eigenvalue of 
(20) largest in absolute value and let 

Then W E  = min &(a,7). 
a, a>O 

7 ,  7 6 10, 27riWl  

The twn-dimensional search (21) was performed by means of two one-dimen- 
sional searches. For a fixed, @(a, 7 )  was minimized as a function of 7 using an 
accelerated search with quadratic fitting as a predictor (Jacoby, Kowalik & 
Pizzo 1972, p. 69). The search was terminated when the increment size AT before 
the next prediction satisfied \A71 < 5 x 10-3(27r/w). With 7 fixed at  this inter- 
mediate optimal value 7*, W ( a ,  7 * )  was minimized as a function of a using the 
same technique until the increment size Aa before the next prediction satisfied 
1Aa1 < 5 x 10-3. The procedure was then repeated until the critical value G?F(N) 
was determined with the accuracy required. The restrictions on IAal and 
are in fact sufficiently stringent that g,E(N) is found accurate to three decimal 
places. 

Mean energy bounds. We solve the problem by Galerkin's method using the 
same expansion functions as before. After the usual manipulations, (18) is found 
to be equivalent to the eigenvalue problem 

I H - e l I  = 0, ( 2 2 )  

where H is a 2N x 2N matrix defined in the appendix. For a and W fixed and 
arbitrary 7 in [0, 27r/w] we may find e ( r ;  9, a )  as the maximum eigenvalue of ( 2 2 ) .  

Let (23) 

Critical values gC and a, of the Reynolds number and wavenumber are found 
from the requirement that 

IE(g*,a)l < We = 9: = minW*(a). (24a, b )  

The integration in (23) was performed using sixteen-point Gaussian quadrature. 
For fixed N ,  y, 8 and a, a value of&!'*, the Reynolds number satisfying ( 2 4 a ) ,  was 
found using the secant method (Ralston 1965, p. 323). E(W*, a )  was then maxi- 
mized as a function of a again using the technique described by Jacoby et al. The 
search was ended when IAal < 5 x The procedure was then repeated until 
(24a, b )  were satisfied with the accuracy required. The criteria are sufficiently 
stringent that 9:f is found accurate to three decimal places. 

The matrix inversions required to form (20 )  and ( 2 2 )  and the evaluation of the 
eigenvalues were carried out using routines provided by the University of 

a 
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Massachusetts Computing Center. The inversion program uses Gauss-dordan 
elimination with complete pivoting. The eigenvalue routine is based on the QR 
algorit'hm (Francis 1961; Wilkinson 1965). In  all cases it was found that the 
trace of M (or H) was equal to the sum of the eigenvalues to a t  least ninedecimal 
places. 

In  the following, superscripts E and M will refer to strong and mean energy 
bounds respectively. grn denotes the Reynolds number grn = (R, Q,d)/v, while 
gP = (R,Q,d)/v. A subscript zero will denote the critical conditions for steady 
flow, viz. W ,  and a0, where W ,  = (R, Q,d)/v. A superscript L will denote values of 
critical parameters from linear theory. 

3. Results and discussion 
3.1. Precision of the numerical procedure 

An analysis of the steady problem (e = 0 )  was used as an initial test of the 
calculation procedure. In  the case e = 0, it  is clear that the strong and mean 
energy bounds should be equal. Using either technique, it was found for AT = 3 
that a,, = 3-1 16 and 9, = 82.669 and for N = 5 that a, = 3.116 and go = 82-650. 
This problem proves to be mathematically equivalent to the Behard problem with 
rigid conducting boundaries, for which Chandrasekhar (1961, p. 38) gives (in our 
notation) a0 = 3.117 and go = 82.650.7 It can be seen that the results are in 
remarkably close agreement. 

For the steady problem the answer found with N = 5 may be considered 
essentially correct. For modulated flow, however, the oscillatory Stokes layer is 
considerably more complex than the mean shear, and hence the modulated 
problem requires mare terms in the expansion for comparable accuracy whenever 
E and y are large. All the results presented are for N = 5, however, as larger 
values of N require excessive computing time and were only used for convergence 
checks. 9 was found to be a monotonically decreasing function of N .  The con- 
vergence of the wavenumber was oscillatory on occasion. The maximum error is 
estimated to be 0.03 yo for e = 0.1, about 1.5 % for e = 2.0 and to be 2.5 yo for 
modulation with zero mean. 

We present values of critical parameters only for 0 < y < 10, as the linear 
results of Riley & Laurence suggest that this is the frequency range of greatest 
interest. For modulated flow with non-zero mean the Stokes layer is confined to a 
region close to the inner cylinder as y + 00 [see (911, and for y > 10.0 the linear 
stability of the system is determined by the mean shear. 

Linear theory derives critical bounds in terms of the parameter .%L,lS. For 
comparison of the predictions of linear and energy analyses we have (arbitrarily) 
chosen 6 = 0.0444, corresponding to the experiments of Thompson (1968). 

t If the primary flow is steady, (15) is satisfied only if e(7; 9) < 0. Then the strong and 
mean energy bounds are both given by (18) with e 0. Since aV/ax = - 1 for steady flow, 
(18) is then equivalent to the Behard problem for rigid boundaries if we associate u with 
the vertical component of velocity, v with the temperature and 9 with 2 JRa, where Ra 
is the Rayleigh number. 
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FIGURE 1. Critical Reynolds numbers W, from strong and mean energy theory with 

the amplitude ratio E as a parameter. ---, 5f.m ; - - - -, 9" m *  

3.2. Modulated flows with non-zero mean 

In  the limit y --f 0, the primary flow is given with good accuracy by (%).? If 9: 
is the critical Reynolds number for strong stability of steady flow, it is clear that 
modulated flow with non-zero mean will be strongly stable if 

i.e. if 

and modulated flow with zero mean will be strongly stable if 

I 9 2 C O S W 7 1  < a?:, 
i.e. if 9: = 9:. (26) 

Thus it is evident that modulation is destabilizing in the low frequency limit. 
Calculation with the complete profile (6) shows that (25) and (26) hold with good 
accuracy for y < 2.0. Evidently, (25) and (26) are still valid if the narrow-gap 
approximation is not made, but with 9c replaced with its wide-gap value. 

t The correct expression is (cf. Hall 1975) 

V(z ,  7) = (1  - z) + E { (  1 - z) cos WT + .5y2(23 + 22 - 322) sin WT} .  

Evidently (8) is not uniformly valid in 7, in particular when cos 07 = 0. However, when 
y + 0 the factor premultiplying sin WT is very much less than 1 -2 .  The strong energy 
bound is determined by V ( z ,  7) a t  a single value of 7, for which cos 07 * 0. Hence the 
results are dominated by the mean shear and the term involving cos WT. Equation (8) is 
used here to illustrate the expected behaviour of the critical parameters, behaviour which 
is borne out by the numerical results found using the complete profile (7) .  
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FIGURE 2. Comparison of the predictions of critical Reynolds numbers from the linear and 
energy analyses. (a) E = 0.1, 1.0. ( b )  E = 2.0, 6.0. 9$$ and 9$f  are the critical values for 
steady flow from the linear and energy analyses. -, 9$2; - - - - 9 9". m t  - - -, .gk. 
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0. I 

2.0 

0 5.0 10.0 

Y 
FIGURE 3. Critical wavenumber from the strong energy analysis with the amplitude ratio 

as a parameter. a: is the crit,ical value for steady flow. 

The critical Reynolds numbers from both the strong and the mean energy 
method are plotted in figure 1 as a function of frequency, with the amplitude 
ratio e as a parameter. For e < 2.0 the strong energy bound increases monotoni- 
cally from 9?/( 1 + e )  as the frequency increases from zero, approaching 92g 
asymptotically from below as the frequency becomes large. For e = 5.0 the 
behaviour is modified only by 92: passing through a slight maximum and then 
a minimum. The mean energy bounds &$ show a similar overall trend, 
approaching 92$ from below as the frequency becomes large. The minimum is 
now, however, evident for e 2 1.0 and is more pronounced; the maximum is 
absent. The minimum occurs approximately a t  y w 3.0, and is largely independent 
of the amplitude ratio. It is due to the shape of the velocity profile; the im- 
portance of in-phase and out-of-phase components of the Stokes layer varies as 
the frequency increases. At low frequencies the in-phase component dominates, 
and as the frequency increases the components may reinforce or oppose one 
another (and the mean shear, if present) to differing degrees. The mean energy 
criterion enlarges the region of stability quite significantly. 

In  figures 2(a )  and ( b )  we compare the linear predictions with those of both 
energy criteria. For 8 2 2.0 (figure 2 b ) ,  the curves of critical Reynolds number 
from linear theory exhibit cusps. This is associated wibh a change in linear 
response and discontinuous jumps in the critical wavenumber-frequency curves 
(the interested reader is referred to Riley & Laurence 1976). We are not primarily 
interested in the details of the linear response, but only in an overall comparison 
with the predictions ofthe energy methods. Energy theory suggests that modula- 
tion will destabilize the flow, but decreasingly as the frequency increases. This 
is also the overall trend of the linear predictions, though for e > 1.0 weak 
stabilization is possible at  intermediate frequencies. The linear and mean energy 
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analyses suggest for 8 = 0.1 that the critical parameters will be largely inde- 
pendent of frequency. Both these criteria define instability as occurring if there 
is disturbance growth from cycle to cycle, and both suggest that modulation a t  
such low amplitude ratios is too weak to affect stability. One suspects that this 
will be a feature of experiments for frequencies sufficiently high that a periodicity 
criterion is a relevant one. 

Figure 3 is a plot of the critical wavenumber aE from strong energy theory as a 
function of frequency (8 = 00 corresponding to modulation with zero mean). 
The predictions of mean energy theory are similar and are not reproduced here. 
For flows with non-zero mean the wavenumber initially increases with frequency 
as the thickness of the Stokes layer decreases. Eventually, as the layer becomes 
increasingly narrow, the ability of the modulation to affect stability lessens. Thus 
the wavenumber passes through a maximum and decreases towards a. for y -+ 00, 

as the instability becomes primarily associated with the mean shear. The stronger 
the modulation, the thinner the Stokes layer may become before this stage is 
reached. Thus for 8 = 5.0 no maximum is evident for y < 10.0. The predictions of 
linear theory are not presented since the wavenumber changes rapidly and 

35-2 

FIGURE 4. Critical Reynolds number W, for modulated flow with zero mean compared 
with the data of Thompson (1968) for 8 = 0.0444, R, = 6.027 cm. @,l. and %f are the 
critical values for steady flow from linear and energy theory respectively. --, WF ; 
- - -_ ,9:; ---, 9;. 
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discontinuously as the linear response varies. However, for e: < 1-0, and for 
E > 1.0 when the frequency is sufficiently high that instability is dominated by 
the mean rotation, the behaviour is similar. Linear and mean energy theory 
predict that a t  low frequencies the wavenumber should be less than the value for 
steady flow. The dependence of the reduction upon the amplitude ratio is similar 
for both. 

3.3. Modulated flow with zero mean 
Figure 4 compares the results of the linear and energy methods with the data of 
Thompson (1968). For y > 2.0 the linear predictions and experiment seem to be 
in reasonable agreement, but for y < 2.0 agreement is poor. The energy methods 
as formulated are evidently too conservative to be more reliable predictive 
techniques at  low frequencies. 

As the Stokes layer becomes confined to the inner cylinder as the frequency 
increases, we expect the critical parameters to become independent of gap width. 
It follows that both the linear and the energy analyses will predict that as y 
becomes large a - y. However, linear theory suggests 

g:,j&- y* or &- ?+, 
h 

where 9 = (RIQp)  R J v ,  p = (w’R;/2v)B, 

while energy theory predicts 
92:- y,  9 i f - y  

or .&EN?,  g@Mwj7 .  
Numerically we find 

a = 0.85y, h? - 15.394, 

aE = 0 . 5 7 ~ ~  kE ,-., 19.57, 

aE = 0-57y, - 24-4f. 

The numerical values of the constants are reliable for the linear predictions for 
y 2 8.0. For the energy analyses the values should be considered approximate. 
Hence the dependence of critical Reynolds numbers upon frequency is altogether 
different in the high frequency limit. We note that this observation is independent 
of the narrow-gap approximation. 

4. Conclusions 

(4) holds, i.e. 

while modulated flow with zero mean becomes unstable whenever (5) holds, i.e. 

At low frequencies modulated flow with non-zero mean becomes unstable when 

grn = @,/(I f4, (27) 

gp = 99,. (28) 

For the steady problem linear theory is an accurate estimate of the onset of 
instability; i.e. 9, = 9t. It follows from (25) and (26) that strong energy theory 
will provide an accurate estimate of the onset of instability for the modulated 
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flow at low frequencies if 9Z’F z 9:. From the calculations we have presented, 
this is evidently not the case: our criterion for global stability of axisymmetric 
disturbances is too stringent, and 9Z’c is significantly less than 9;. 

Joseph & Hung (1971) have, however, presented a modified energy theory for 
circular Couette flow, which requires the motion to be stable in the sense that the 
kinetic energy of disturbances of finite but limited size decays from the start. In 
addition, the threshold amplitude may be calculated. On the basis of this weaker 
concept of stability the ‘modified’ energy bound is found to be very close to the 
linear value. The arguments used to derive (25) and (26) apply equally well to this 
modified theory, and we may conjecture, therefore, that (27) and (28) would be in 
exact agreement with the results of this modified energy theory when applied to 
the modulated problem. 

Linear theory provides a sufficient condition for instability. The energy method 
provides a sufficient condition for stability (though as formulated here only 
for a certain class of disturbances). The techniques are, therefore, complementary. 
The size of the region between the two bounds provides some indication of the 
likelihood of subcritical instability and whether this is most probably the 
dominant mode of instability observed experimentally. For the problem con- 
sidered here the region open to possible subcritical instability, though not large 
in comparison with that in situations such as plane Couette flow, is still reasonably 
extensive in absolute terms. We have remarked, throughout our discussion, that 
the overall trends of W L ( y ) ,  g E ( y )  and 9Z’M(y) are similar. It seems unlikely that 
the predictions of the ‘modified’ energy theory would depart from these overall 
trends. Thus the region open to subcritical instability would be reasonably small. 
Relation (5) is consistent with linear theory at higher frequencies. We might 
expect in these circumstances that nonlinear perturbation theory based on the 
linear solution would give an accurate description of the secondary motion. At low 
frequencies the instability observed is subcritical and a mathematical description 
of such secondary motion would be considerably more complex. Whenever the 
onset of instability is given by (27) and (28) the disturbance growth observed is 
the result of instability of an effectively steady, quasi-static profile. If E is large it 
may be possible that the growth observed during one cycle is entirely independent 
of that observed in successive cycles. 

It would appear worthwhile to apply the modified energy theory to the 
modulated problem for the entire range of frequencies of interest. This should 
certainly provide accurate bounds a t  low frequencies, and narrow the region open 
to subcritical growth, i.e. the region between certain instability and conditional 
nonlinear stability. 
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Appendix 
The functions $n and f i n  are defined by - 

$n(x)  = x2(l -x)'Yn-l(x), = -x) Yn-l(%), 
where $, and f n  are Jacobi polynomials of order ?z and are normalized by the 
requirements - 

n! 4 
(6 + 2n) (4 + n) ! ' 

(see Morse & Feshbach 1953, p. 780). The sets ($n}z-l and {$n};=l may be shown 
to be complete and minimal in L2[0, I] (Riley 1975; see discussion below). 

If the approximate solutions 

are substituted in (18q b )  a truncation error results: 

- e9uN + ~ ' w N  + *&(aV/a~)  V N  = EN, (A l a )  

evN-9vN/+a9(aV/aX)uN = EN. (A 1b)  

The errors €,"and EN are made orthogonal to the expansion functions 4% and 
6, respectively for n = 1,2,  . . ., N .  We define 

After the integrations have been performed (A 1) becomes 

A 0  

To calculate strong energy bounds we note that e = 0, and solve 

If 9 is fixed and a satisfies (A 3) it  follows from (17) that -a is also a solution. 
Hence the roots of (A 3) are of the form f /$&I .  Let /3 = - 2 1 ~ 9 ,  then since the 
matrices B and B are positive definite and invertible, (A 3) is equivalent to 

where 
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To evaluate mean energy bounds, we note that A and A are positive definite and 
hence invertible. Thus e(7; 9, a) may be found as the maximum eigenvalue of 

where 

I H - e l I  = 0, 

A sequence is minimal if the sequence formed from the original by deletion of 
one element no longer spans the original subspace. This condition on the expansion 
functions is necessary but not sufficient for a Galerkin type-procedure to be stable 
(Mikhlin 1971, p. 132). It is a requirement that the expansion functions be not too 
linearly dependent. Any choice of expansion functions should a t  least have this 
property. Functions of the form xz( 1 - z)29 and z( 1 - x) xk, while satisfying the 
boundary conditions required here, are not minimal and so are not used. 

We could use the Chandrasekhar-Reid functions discussed by Chandrasekhar 
(1961, p. 634). However, one of our objectives was to evaluate the use of expan- 
sion functions of the type q5% and 4%. It is possible (Riley 1975) to prove the 
general result that if {$,I is a complete orthogonal sequence in the space LL[a, b]  
with inner product defined by a continuous non-negative weighting function 
w(x) and if (4,) is contained in P [ O ,  11, then the sequences { W ( Z ) @ ~ ( X ) }  and 
{$%(x)} form a complete biorthogonal sequence in L2[0, 11 and are both minimal. 
Since the properties of many orthogonal polynomials are well documented and 
the respective weighting functions may satisfy the required boundary conditions 
this result provides a convenient technique for constructing complete sets of 
functions satisfying prescribed boundary conditions for use in Galerkin's method. 

Our numerical experiments showed {$%} and (4%) to provide a stable numerical 
scheme. Convergence (at least for the steady problem) appears to be slower than 
that obtained using the Chandrasekhar-Reid functions, presumably because they 
are similar to the actual eigenfunctions. For more general problems, Orszag & 
Israeli ( I  974) do not recommend the Chandrasekhar-Reid functions. Their 
extension to situations satisfying more than four boundary conditions, should 
this ever be required, would be tedious. 
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